
1. (a) If a function f (z) is analytic within and
on a closed contour C and a is any point
lying in it, then prove that
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(b) Obtain the Taylor’s series and Laurent
series which represent the function
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2. (a) State and prove Morera’s theorem.

(b) Prove that the function 1sin c z
z
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be expanded in a series of the type
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3. (a) Find the residues at all singularities in a

contour C of the functions 3 2
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(b) By the method of contour integration, prove
that
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4. (a) Find all the Mobius transformations which
transform the half plane I(z)  0 into circles
| w |  1.

(b) If w = f (z) represents a conformal mapping
of a domain D in the z-plane into a domain
D' of the w-plane, then prove that f (z) is
an analytic function of z in D.
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5. (a) State and prove Montel’s theorem.
(b) Prove that the space of analytic functions

H(G) is complete metric space.

6. (a) For 0 < Re z < 1, prove that
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(b) Define the following terms :

(i) Analytic continuation along a chain
of domains

(ii) Analytic continuation along a curve
(iii) Complete analytic function
(iv) Natural boundary
(v) Function element

7. (a) Let f be a function defined on (0, )
such that f (x) > 0 for all x > 0. Suppose
that f has the following properties :
(i) log f (x) is a convex function
(ii) f (x + 1) = xf (x) for all x
(iii) f (1) = 1

Then prove that ( )f x x for all x.
(b) State and prove Monodromy theorem.

8. (a) Suppose f (z) is analytic in a closed ring
r1  | z |  r3. Let r1  r2  r3 and M(ri)
be the maximum value of | f (z) | on the
circles | z | = ri (i = 1, 2, 3). Then prove
that
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(b) State and prove Jenson's inequality.
9. (a) Let f be a non-constant entire function of

order  with f (0) = 1 and let {a1, a2,
...} be the zeroes of f counted according
to multiplicity and arranged so that
| a1 |  | a2 |  ......
If an integer p >  –1, then prove that
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(b) If | z |  1 and p  0, then prove that

| 1–Ep (z) |  | z |p +1

where Ep(z) are elementary factors of an
analytic function.

10. (a) State and prove Little Picard’s theorem.
(b) Suppose g is analytic on B(0, R), g(0)=0,

| g'(0) | =  > 0 and | g (z) | M for all z,
then prove that
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